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Abstract

Atlas-based automated anatomical labeling is a fundamental tool in medical image segmentation, 

as it defines regions of interest for subsequent analysis of structural and functional image data. 

The extensive investigation of multi-atlas warping and fusion techniques over the past 5 or more 

years has clearly demonstrated the advantages of consensus-based segmentation. However, the 

common approach is to use multiple atlases with a single registration method and parameter set, 

which is not necessarily optimal for every individual scan, anatomical region, and problem/data-

type. Different registration criteria and parameter sets yield different solutions, each providing 

complementary information. Herein, we present a consensus labeling framework that generates a 

broad ensemble of labeled atlases in target image space via the use of several warping algorithms, 

regularization parameters, and atlases. The label fusion integrates two complementary sources of 

information: a local similarity ranking to select locally optimal atlases and a boundary modulation 
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term to refine the segmentation consistently with the target image's intensity profile. The ensemble 

approach consistently outperforms segmentations using individual warping methods alone, 

achieving high accuracy on several benchmark datasets. The MUSE methodology has been used 

for processing thousands of scans from various datasets, producing robust and consistent results. 

MUSE is publicly available both as a downloadable software package, and as an application that 

can be run on the CBICA Image Processing Portal (https://ipp.cbica.upenn.edu), a web based 

platform for remote processing of medical images.
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1. Introduction

Automated segmentation of anatomical structures, i.e. delineation of regions of interest 

(ROIs), on MR images is an extremely important task for quantitative analysis of structural 

and functional brain changes, particularly in studies with large datasets (Good et al., 2002; 

Poldrack, 2007). The rapidly increasing amount of imaging data creates an urgent need for 

accurate and consistent phenotyping of brain structures in tens of thousands of images 

acquired from multiple institutions, and of subjects in various age groups (Medland et al., 

2014; Hibar et al., 2015). During the past 5 years, multi-atlas segmentation (MAS) has 

increasingly gained attention as a potential solution to this problem (Iglesias and Sabuncu, 

2015). The main principle of MAS is to use a priori knowledge, provided by ensembles of 

segmented atlases, i.e. images with manually or semi-automatically created reference 

segmentation labels, to infer segmentation in a target image via multiple atlas-to-target 

image registrations. After being warped individually to the target image, multiple atlases 

provide various representations of the anatomy and correct each other's errors in a process 

known as label fusion. MAS has shown remarkable improvement over single-atlas-based 

segmentation, and has now been considered as the standard framework for segmentation of 

biomedical images. A multitude of algorithms have been proposed in recent years to 

improve various facets of the MAS framework, with particular emphasis on atlas selection 

and robust and accurate fusion of the warped atlas labels (Aljabar et al., 2009; Lötjönen et 

al., 2010; Sabuncu et al., 2010; Landman et al., 2011; Leung et al., 2011; Asman and 

Landman, 2013; Cardoso et al., 2013; Zikic et al., 2014; Wu et al., 2015).

With the exception of patch-based approaches that use affine registration to align atlas 

images (Coupé et al., 2011; Konukoglu et al., 2013), deformable image registration (Sotiras 

et al., 2013) is a core component of all MAS methods, and the quality of individual 

registrations has a very high impact on the accuracy of the final segmentation. However, 

anatomical correspondence may not be uniquely determined from intensity-based image 

attributes, which drive deformable registration algorithms. Furthermore, exact anatomical 

correspondence may not exist at all due to anatomical variability across subjects. Anatomies 

closer to an atlas are well represented by a diffeomorphism. However, large differences 

between an individual and the atlas lead to residual information that the transformation does 

not capture. Techniques such as atlas selection from a larger atlas dataset (Aljabar et al., 
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2009; Wu et al., 2007; Gousias et al., 2010; Hoang Duc et al., 2013; Sanroma et al., 2014), 

or local similarity based weighting in label fusion (Artaechevarria et al., 2009; Isgum et al., 

2009; Khan et al., 2011; Wang et al., 2012) were proposed to address these challenges, by 

selecting, either locally or globally, warps most similar to the target image. However, not 

only the choice of the atlas, but also the warping algorithm and the parameters of the 

algorithm, particularly regularization, play an important role in the accuracy of the 

registration. Comparative evaluations on multiple datasets have shown that registration 

algorithms differed greatly in performance, when facing diverse databases or challenges, 

globally as well as in individual regions of the brain (Ou et al., 2014). Figure 1 shows an 

illustrative example of such differences in registration accuracy for two registration 

algorithms that have reported high accuracies.

The importance of variability in algorithm performance is often neglected in current MAS 

methods, where the general practice is to select a single warping algorithm and to use it with 

a single set of registration parameters. There have been few methods that specifically 

investigated the effect of registration algorithms and parameters on multi-atlas segmentation. 

In Bai et al. (2012), the authors investigated the roles of image registration and segmentation 

model complexity for mouse brain segmentation using 4 different registration algorithms, 

and concluded that image registration plays a more crucial role in segmentation compared to 

the complexity of the segmentation model. Interestingly, in early days of atlas based 

segmentation, work reported in Rohlfing and Maurer (2005) investigated the effects of 

various atlases and parameterizations of the registration algorithm, casting the segmentation 

problem as a “multi-classifier” framework. This analysis was limited to a comparison 

between single atlas with 3 parameters and 3 atlases with a single parameter, using a free-

form deformation algorithm with simple label fusion, and was validated on 7 subjects only. 

Despite this limitation, the authors observed that in all cases classifier combinations 

consistently improved classification accuracy, and that improvements in accuracy were 

possible with various parameterizations of the non-rigid registration technique, even using a 

single atlas.

In this paper, we propose a new method, MUlti-atlas region Segmentation utilizing 

Ensembles (MUSE), a generalization of the MAS framework to include a broad 

representation of a given anatomy that reflects variations due to the choice of the atlas, as 

well as the warping method and warping parameters. In this way, we obtain a large 

ensemble of tentative label maps that are generated by applying a multitude of 

transformations on multiple atlases, and we use the ensemble for deriving final labels for 

each voxel. The general concept of generating a larger ensemble of label maps was explored 

in a few recent papers: in Wang et al. (2013) multiple warps from the same atlas were 

generated by composing inter-atlas registrations and atlas-target registrations; in Pipitone et 

al. (2014) segmentations from a small number of atlases were propagated to a subset of 

target images and the new atlases were used for segmenting all target images. However, 

these methods used a different approach than ours, by following an “atlas propagation” 

strategy.

MUSE utilizes a spatially adaptive strategy for the label fusion. A local similarity ranking 

score is calculated and used for selecting warped atlases that are locally most similar to the 
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target image. For similarity calculation, we define a rich attribute descriptor as in Ou et al. 

(2011) that renders each voxel more distinctive than intensity information alone. The local 

similarity ranking is particularly essential for the ensemble approach: the ensemble 

construction covers a range of deformation parameter values (as well as atlases and 

algorithms). This may result in a high variation within the ensemble, which is desirable to be 

able to better capture the target anatomy. However this also necessitates a reliable selection 

of best warps in order to guarantee that suboptimal or failed registrations don't affect the 

decision in final label assignment. The label fusion also incorporates an intensity term that 

modulates the segmentations in the boundaries of the ROIs. The main purpose of the 

intensity term is to make the final segmentation consistent with the intensity profile of the 

target image.

In the current paper, we validated our method using several public benchmark datasets with 

expert defined reference labels, and we confirmed that the ensemble approach consistently 

outperforms segmentations obtained using individual warping methods/parameters alone. 

Also, in an independent comparative evaluation done as part of the “MICCAI 2013 

Challenge Workshop on Segmentation” MUSE obtained the highest average Dice score (d = 

0.8686) in the mid-brain segmentation category, and it maintains the first rank as of 

11/02/20153. As an attempt towards the ambitious goal of quantitative anatomical 

phenotyping of the human brain using big data, we applied MUSE on thousands of images 

from several large-scale neuroimaging studies, and showed the robustness of our method 

and consistency of segmentations for datasets with significant differences in scanner 

characteristics and sample demographics, by accurately estimating brain age from 

segmented ROIs. Finally, we performed experiments that investigated the contribution of 

various ensemble combinations, and individual components of our method, to the final 

segmentation accuracy.

Our method is publicly available and can be downloaded from our web page4. Alternatively 

the MUSE software can be run remotely on the CBICA Image Processing Portal5, a new 

web platform that allows users to upload their data and run software developed in our lab. 

The web client version of MUSE will also include a new multi-study atlas dataset with a 

very large sample size, and a wide range of age and scanner characteristics. This atlas 

dataset was constructed by automatically selecting a subset of the most representative 

subjects from several datasets that include scans of healthy individuals. The ROI labels for 

atlas images were automatically created using MUSE and were carefully controlled for 

quality using automated and manual verification procedures. We believe that the software 

package and the new atlas dataset with large sample size will be valuable resources for the 

community.

3MICCAI 2013 SATA Challenge Leaderboard, retrieved 11/02/2015 from URL http://masi.vuse.vanderbilt.edu/submission/
leaderboard.html
4http://www.cbica.upenn.edu/sbia/software
5The beta release is accessible from http://ipp.cbica.upenn.edu
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2. Methods

MUSE generates a large ensemble of candidate labels in the target image space using 

multiple atlases, registration algorithms and smoothness values for these algorithms. The 

ensemble is then fused into a final segmentation. An illustration of the MUSE algorithm is 

given in figure 2. Individual components of MUSE are explained in detail in the following 

subsections.

2.1. Construction of the ensemble of warps

Given the target image S to be segmented, and n atlas images with the corresponding 

reference label maps each having l ROI labels, including the background, the aim of our 

method is to segment S by assigning an ROI label to each voxel in the image. Inspired by the 

manifold representation that was introduced in Baloch and Davatzikos (2008), we define the 

anatomic equivalence class of S as a set of all possible ways of representing the morphology 

of that individual via a transformation of an atlas and a respective residual, obtained by 

varying transformation parameters, i.e.

(1)

where h : ΩS → ΩT, x → h(x) is a transformation that maps the subject space ΩS to atlas 

space ΩT, Rhθ is the residual of the transformation, and θ is the parameter vector, which 

herein combines three important parameters for variations of h : hτ,μ,λ, the atlas, the 

deformation method, and the amount of regularization. Varying Θ = {θ1, …, θk} effectively 

allows every individual representation to slide along its own manifold, thereby leading to 

multiple ways of representing each individual as an ensemble . By applying 

each transformation hθi, i = {1 … k} on the corresponding atlas image and label map we 

obtain an ensemble of k atlas images and label maps registered to subject space, which we 

denote here as  and .

2.2. Spatially Varying Similarity Weighting

We calculate a local similarity score at each voxel of S against each warp , such that a 

higher score is given to warps that are locally more similar to the target image. For the local 

similarity calculation, we define a rich attribute descriptor as in Ou et al. (2011). A voxel x 
is described by a d-dimensional attribute vector A(x), which encodes the geometric context 

of this voxel. For computing A(x) an image is convolved with a set of Gabor filter banks, 

which capture the texture information at multiple scales and orientation, and the responses 

of these filters at voxel x are concatenated into a vector. The local similarity between two 

voxels x and y is then defined as

(2)

Doshi et al. Page 5

Neuroimage. Author manuscript; available in PMC 2017 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



After the similarity  between the target image and each warp at each 

voxel x ∈ ΩS is calculated, local similarity scores are ranked to assign a rank s(x, i), with a 

higher rank representing higher morphological similarity between S and the warp  at 

voxel x. The calculated spatially varying rank score s(x, i) is assigned to the selected 

transformations as a weight for subsequent label fusion.

2.3. Boundary Modulation

The intensity based boundary modulation term indicates the probability of the observed 

intensity at a voxel x to belong to the tissue intensity distribution of the specific ROI. 

Intuitively, the main objective of the boundary modulation term is to refine the ROI 

boundaries by penalizing large variations in the intensity distribution within an ROI. It's 

important to note that in contrast to methods where the intensity model is estimated from the 

atlas images for which the segmentation labels are known, we estimate the intensity 

distribution of ROIs from the target image, similar to Wolz et al. (2009). Such estimation is 

more robust to global and local intensity variations between the atlases and the target image. 

The intensity distribution of each ROI is modeled as a normal distribution with the 

assumption that the ROIs belong to a single tissue type with a smooth intensity variation. As 

the ROI segmentation on the target image is not known, the parameters of the distribution 

are estimated from a consensus segmentation, using intensities of voxels for which 90% of 

the warps agree on the segmentation label. An ROI membership score b1(x, p) is calculated 

for each voxel x ∊ ΩS and each ROI p ∊ {1, …, l}.

In addition to the ROI membership function, we also calculate a segmentation based term in 

order to achieve more accurate delineation of the brain boundary. We assign to each ROI in 

the reference dataset a tissue type categorizing it as “brain”, if the ROI is on the gray matter 

(GM) or the white matter (WM), or “non-brain”, if the ROI is on the cerebrospinal fluid 

(CSF) or the background. The new term, b2(x, p), quantifies the agreement between the 

tissue type observed at voxel x and the expected tissue type of ROI p. Tissue probabilities of 

target image voxels are computed for the three tissue types GM, WM and CSF using a fuzzy 

segmentation, and are converted into tissue probability maps for “brain” and “non-brain”. 

These two maps are then used to set the value of b2(x, p), by assigning to it the value at 

voxel x from the probability map that corresponds to the tissue type of ROI p.

2.4. Weighted Label Voting

The label fusion incorporates the local similarity ranking and the intensity based boundary 

modulation term. These two terms are effectively representing two complementary sources 

of information:

1. An ensemble constructed by atlas transformations, which is used to transfer 

segmentation labels from atlases to the target space;

2. The intensity information from the target image, which modulates the 

segmentation, particularly at the ROI boundaries.

The weighted vote of voxel x ∊ ΩS for being labeled as ROI p is calculated as:
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(3)

where k is the number of selected warps, δ(·) is an indicator function used for selecting 

warps with the ROI label p at voxel x, and α1 and α2 are coefficients that modulate the 

effect of each term to the final fusion. Note that the rank score is normalized by the sum of 

all ranks to obtain a value bounded between 0 and 1. A voxel is assigned to the most likely 

label p*, i.e.:

(4)

3. Experiments

In this section, we present experimental results that were obtained by applying our method 

on a large number of datasets.

The first set of experiments aimed to evaluate the contribution of various ensemble 

combinations and individual components of our method to the final segmentation. A second 

set of experiments were performed to validate segmentation performance in comparison to 

other multi-atlas label fusion methods. We also present the results of an independent 

comparative evaluation that was done as part of the MICCAI 2013 segmentation challenge. 

The validation experiments were performed on various publicly available datasets with 

reference labels for diverse brain regions. A single fold cross-validation was applied for 

each dataset to segment ROIs in each image. This was preferred in order not to over-tweak 

the parameters for a specific set of reference atlas dataset and thus to keep our method more 

generalizable to unseen datasets. Besides, differently from learning-based approaches that 

rely on multi-fold cross-validation for the construction of the training model, our method 

does not require any training on reference atlas labels. The segmentations were applied 

independently on each dataset, as the reference label definitions were not consistent between 

various atlas datasets. The Dice similarity coefficient, or Dice Score, a standard metric that 

is widely used for measuring the degree of overlap between the target and the reference 

segmentations, was calculated for quantitative evaluation. The global Dice score for a 

subject was calculated as the average of the Dice scores for all individual ROIs for this 

subject.

A third set of experiments investigated the segmentation performance of our method on 

multi-site data. Imaging variability due to differences in scanner manufacturers, scan 

protocols and parameters is a major challenge for cross-study analysis of MRI data. The 

robustness of any segmentation method is of critical importance for addressing the 

challenges of cross-study analyses using “big data”, which is a direction of research that has 

been recently necessitated by the explosive growth of neuroimaging data. Since common 

reference labels for multiple datasets were not available, a direct quantitative evaluation of 

the segmentation accuracy in multi-site settings was not possible. Thus, we evaluated a 
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higher-level outcome obtained by using the segmented ROIs as features in a support vector 

regression, in order to estimate “brain age”. In recent years the concept of using machine 

learning to determine brain age has gained popularity as a means for defining normative 

trajectories of brain development and aging (Dosenbach et al., 2010; Franke et al., 2012; 

Erus et al., 2014). A good brain age index offers high specificity, thereby enabling the 

detection of subtle deviations from normative trajectories much better. We created a large 

dataset of clinically normal subjects (n = 1029, age range 8 to 94) by pooling data from 

several studies. We segmented ROIs and we calculated the brain age with cross validation 

using ROI volumes as input to an ensemble learner. We measured the cross-validated brain 

age prediction accuracy, as an indicator of robustness and precision of the derived brain age 

index.

3.1. Data description

The internal validation experiments were performed on four benchmark datasets, BrainWeb 

(Aubert-Broche et al., 2006), IBSR6, NIREP (Christensen et al., 2006) and OASIS (Marcus 

et al., 2010), for which expert defined reference ROI labels were publicly available. The 

evaluation in the MICCAI 2013 segmentation challenge was done using the OASIS dataset. 

An illustration of the reference labels in each dataset is provided in supplementary figure 1.

In order to evaluate the multi-site segmentation performance of our method we created a 

large multi-study dataset of clinically normal subjects by pooling data from studies 

including BLSA (Resnick et al., 2000, 2003), ADNI-1 (Jack et al., 2008), PNC 

(Satterthwaite et al., 2014), BBL-NC 7, and NiCK (Hartung et al., 2015). The general 

characteristics of each of these datasets are summarized in table 1.

3.2. Choice of registration methods and parameters

We used two relatively recent and extensively validated deformable registration methods, 

DRAMMS (Ou et al., 2011, 2014) and ANTS (Avants et al., 2008; Klein et al., 2009), for 

transferring atlas labels to target space. For both methods, the main parameter that regulates 

the smoothness of the deformation field was sampled at two operational points, specifically 

g = {0.1, 0.2} for DRAMMS and s = {0.25, 0.5} for ANTS. The parameters g = 0.2 for 

DRAMMS and s = 0.5 for ANTs are the default weighting parameters in these registration 

algorithms. Several independent studies have reported that these default parameters 

generated reasonable to very accurate registration results for multiple datasets. We further 

included g = 0.1 for DRAMMS and s = 0.25 for ANTs, which means smaller weights for 

smoothness. This results in a more aggressive registration, trading the deformation 

smoothness with higher registration-based voxel-/region-wise matching, which may be 

needed especially when the atlas and target subjects bear larger inter-subject variations (e.g., 

different cortical folding patterns may require less smooth deformation to match across 

patients). In comparative survey papers (Ou et al., 2014; Klein et al., 2009) and in many 

other studies, it was reported that more aggressive deformations may result in higher atlas-

to-target regional overlaps, which is not ideal for registration but preferable for atlas-based 

6National Institute of Health supported Internet Brain Segmentation Repository (IBSR), http://www.cma.mgh.harvard.edu/ibsr
7Brain Behavior Laboratory, UPENN, http://www.med.upenn.edu/bbl/bbl.shtml
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segmentation. In our experiments we used these two parameter values to explore the 

potential complementary information provided by the default and more aggressive values for 

smoothness of the deformation field. However our method is generic and it can be run with 

other values of these and other parameters, as well as with other registration algorithms.

3.3. Results on public datasets

MUSE was applied on 4 public datasets for which reference label masks for diverse sets of 

ROIs were provided. All experiments were performed using leave-one-out cross validation, 

applying it independently for each dataset. In each fold, for segmenting the left-out subject 

all remaining images were used as the atlas pool, from which a subset of atlases were 

selected. In these experiments, we applied MUSE with various combinations of warps as 

input to the label fusion, i.e. by varying the number of atlases, the registration algorithms 

and registration parameters used in the registration step, in order to analyze the contribution 

of the ensemble to the labeling performance.

3.3.1. Comparison of various combinations of warps—Table 2.A below shows the 

contribution of combining various registration methods and various regularization 

parameters in segmentation performance. In all experiments, the number of atlases was set 

to 7. The selection of the atlases that were used in the segmentation was done by ranking the 

atlas pool based on global similarity to the target image after linearly aligning all atlases to 

an average atlas. In order to emphasize the effect of registration algorithms and parameters, 

we used simple majority voting in label fusion, where each voxel was assigned to the ROI 

with the highest number of votes from all warped label maps. The first four columns show 

the average Dice scores for single method/parameter, while the last column includes the 

ensemble of all warps in the fusion. We observe that, for each dataset, the complete 

ensemble of warps consistently outperforms ensembles of warps from a single registration 

algorithm, with significant differences (p < 0.01 with a paired t-test).

3.3.2. MUSE with similarity ranking—Table 2.B shows the results when the label 

fusion was done with the adaptive weighting using the local similarity ranking term. The 

addition of the similarity based weighting term significantly increases the performance 

compared to simple majority voting (p < 0.01 for all datasets). Differences between using 

the complete ensemble of warps versus any set of warps from a single registration algorithm 

are significant as well.

3.3.3. MUSE with similarity ranking and boundary modulation—Table 2.C shows 

the results obtained using the complete MUSE method. The additional boundary modulation 

term results in higher segmentation accuracy for all datasets, except NIREP. The differences 

were significant, except for OASIS (p = 0.06185). Box plots of average Dice scores for each 

dataset using the complete ensemble of warps and the three different label fusion strategies 

are shown in figure 3. An example segmentation on one of the BrainWeb subjects that 

highlights the improvements as a result of ensemble construction and the proposed label 

fusion strategy are shown in figure 4.
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3.3.4. The effect of number of atlases on the segmentation—Ideally, it would be 

preferable to run any multi atlas label fusion method with the maximum number of available 

atlases. However, as each atlas should be non-linearly warped to the target space, this may 

not be feasible or preferable in terms of available computational resources. Thus it's 

important to select the appropriate atlas set that will give accurate results with the least 

number of atlases. For evaluating the effect of number of atlases on the segmentation 

performance, we applied MUSE on all 4 datasets with varying number of atlases within a 

wide range. We observe that the segmentation accuracy consistently increases with more 

atlases until it reaches a stable value around 7 atlases (Figure 5).

3.4. Segmentation of midbrain structures in the OASIS Dataset

As part of the MICCAI 2013 segmentation challenge, a dataset with training and testing 

images from OASIS project with reference label maps was created for evaluating multi-atlas 

label fusion algorithms in segmentation of mid-brain structures. The reference labels for the 

final test set were kept undisclosed and the segmentation accuracy of participating methods 

was calculated by the organizers. Table 3 below presents a summary of the challenge results. 

The challenge attracted a wide range of methods, including MUSE (named in the challenge 

as UPENN-SBIA-MAM), the joint label fusion approach described in (Wang et al., 2012) 

(PICSL), a levelset-based label fusion and correction method (SBIA-LevelSet), a new label 

fusion method that uses a modality independent neighbourhood descriptor (Heinrich et al., 

2012) (deedsMIND), and a label propagation method using random forests (Zikic et al., 

2014)(MSRC). Consistently with our cross-validated segmentation accuracy on the training 

dataset, MUSE performed with high accuracy on the testing dataset and obtained the highest 

average Dice score. However, the scores of the three methods with the highest ranks were 

similar and comparable.

3.5. Application of MUSE on a multi-site dataset of healthy control subjects

For each subject of the pooled multi-site dataset ROI segmentation was performed by 

independently applying three different methods, MUSE, STAPLE (Warfield et al., 2004) 

and Joint Label Fusion (Wang et al., 2012). In each experiment we used 11 atlases selected 

from the set of 35 OASIS atlases with reference labels, and we used the complete ensemble 

of warps computed by applying DRAMMS and ANTS with the two smoothness values for 

each algorithm. Scatter plots of ROI volumes of all subjects for lateral ventricles, 

hippocampus, posterior cingulate gyri and superior frontal gyri, as well as for total GM and 

WM volumes, calculated using MUSE and the two other label fusion methods are shown in 

supplementary figures 2 and 3.

We used ROI volumes as input to a supervised learning framework for the prediction of 

brain age. We trained an ensemble of regressors on the ROI volumes using the complete 

dataset (n = 1029) with leave-one-out cross-validation, and predicted the age of each subject 

using the trained models. We calculated Pearson's correlation coefficient (r), concordance 

correlation coefficient (ccc) (Lin, 1989) and mean absolute error (MAE) as quantitative 

metrics of prediction accuracy. The quantitative evaluation results for the three methods are 

given in table 4. MUSE obtained the highest accuracy in terms of all three metrics. A plot of 

actual ages and predicted brain ages of all subjects are shown in figure 6.
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4. Discussion

We presented a new method for ensemble-based brain parcelation. The main contribution of 

the proposed framework is that it represents each anatomy with a rich ensemble of warps 

that incorporates choice of the atlas, deformation algorithm and deformation parameters. 

Different registration methods, which generally use notably different image features, energy 

formulations and optimization algorithms, provide complementary information about the 

anatomy. Each method and parameter set can be relatively less or more accurate in certain 

areas of the brain, thereby rendering an ensemble-based segmentation advantageous. 

Moreover, our approach is effectively a patient- and regionally-specific application of MAS, 

as for each individual and each brain region the most suitable set of labeling estimates was 

used in the ensemble approach.

We demonstrated that the ensemble of a multitude of warps, particularly using appropriate 

techniques for fusing them together, has significantly improved the segmentation accuracy, 

and provided robust segmentations. The fact that ensemble fusion consistently outperforms 

segmentations using single registration algorithm/parameter combinations is particularly 

important. Selection of optimal algorithm/parameter value for MAS is an open question, as 

we don't have a priori correct value for it. As stated in Rohlfing and Maurer (2005), the 

ensemble approach efficiently solves this problem by covering a range of possible values 

without having to pick one, and in this way provides a robust segmentation tool. This 

approach is more and more required in the big data era where multi-site data with diverse 

scanner characteristics and subject demographics are increasingly used.

MUSE achieved consistently high Dice scores for the segmentation of important deep brain 

structures, such as hippocampus, thalamus and caudate, which have been previously shown 

to be associated with various neurodegenerative diseases (Laakso et al., 1996; Konick and 

Friedman, 2001; Levitt et al., 2002), and for which accurate segmentation is very important 

for the quantification of disease related changes. Importantly, MUSE achieved an accuracy 

comparable to a recent learning based approach (Wang et al., 2012), which incorporated 

massive training for each ROI using image patches and corresponding labels from the 

training set. A learning based approach is expected to improve the segmentation accuracy 

within a single dataset, however it may also overfit to a specific set of reference labels and 

thus may have lower generalizability to new datasets, compared to a pure label fusion based 

approach without learning. We tested the robustness of MUSE as a generic segmentation 

tool in our experiments using multi-site datasets. Imaging features derived using MUSE 

segmentation could accurately predict the brain age, which is promising for the exploration 

of large quantities of neuroimaging data from various studies with the aim of phenotyping 

the human brain.

In our internal validation experiments we demonstrated the contribution of the similarity 

ranking and the boundary modulation terms to segmentation performance. For one of the 

datasets, NIREP, the boundary modulation term did not improve the quantitative results. 

With a closer inspection, we observed that the decrease in the Dice score is mainly due to 

the low accuracy of the reference ROI masks. Specifically in the deep brain structures, the 
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reference ROIs were under-segmented. The boundary modulation term thus tends to 

compensate for the under-segmented areas that have a similar intensity profile.

One of the limitations of MUSE is the high computational requirement, which is a general 

problem for MAS methods. While the use of multiple registration methods and atlases 

would linearly increase the computation time, this is not a hard constraint for the practical 

application of MUSE, because the registrations are very efficiently parallelizable, and 

notably, multi-scale implementation of registration algorithms can effectively generate 

warps of various smoothness levels for no additional cost. Furthermore, depending on the 

available computational resources, the user can easily limit the number of required 

registrations using the command line parameters.

In summary, we have presented a methodological framework for ensemble-based 

segmentation of brain MRI using a rich representation of brain anatomy via multiple atlases, 

warps and parameter sets, and via an adaptive and subject-specific ensemble-based 

segmentation. Our results showed that this approach outperforms methods that are based on 

single parameter sets and registration algorithms, and can therefore provide a foundation for 

robust segmentation.

We provide MUSE software both as a downloadable package, and as an application that can 

be run remotely on our web based platform. We believe that this would allow users with 

diverse needs, datasets, expertise and computational resources to be able to use MUSE both 

conveniently and efficiently. The web client will also allow users to use a very large atlas 

dataset for the segmentation. This dataset will incorporate datasets with considerable 

diversity in scanner and subject characteristics, and will be regularly expanded with new 

atlases in the future.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• A new multiatlas segmentation framework using a broad ensemble of labeled 

templates;

• Combines different atlases, warping algorithms, and regularization parameters;

• Uses an adaptive fusion strategy through local similarity weighting and intensity 

based refinement;

• Ensemble approach provides robustness to image variations and produces 

accurate segmentations;
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Figure 1. 
Illustration of differences resulting from the application of two different registration 

algorithms; a) The target image, b) warped image obtained using DRAMMS, c) warped 

image obtained using ANTS. The red circles point to areas where one of the methods is 

locally more accurate than the other method (DRAMMS on the top, and ANTS in the 

bottom).
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Figure 2. 
A schematic illustration of the MUSE algorithm.
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Figure 3. 
Box plots of average Dice scores for each benchmark dataset obtained using majority 

voting, MUSE with similarity ranking and MUSE with similarity ranking and boundary 

modulation. In all experiments DRAMMS and ANTS registrations of 7 atlases for two set of 

parameters were used as input to label fusion. Please note that the segmentation accuracy 

between datasets is not comparable, since each dataset has a different reference ROI 

definition.
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Figure 4. 
An example from the BrainWeb dataset highlighting the effects and the improvements 

resulting from individual components of the method. The figure shows the original image 

(a), and the GM probability maps resulting from: majority voting of DRAMMS warps (b), 

majority voting of ANTS warps (c), majority voting of DRAMMS+ANTS warps (d) and the 

final result employing the warp ensemble, similarity ranking and boundary modulation (e). 

The marked circle indicates the area of improvement as a result of the combination of warps 

as well as the proposed label fusion method.

Doshi et al. Page 20

Neuroimage. Author manuscript; available in PMC 2017 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Dice scores obtained for label fusion using varying number of atlases.
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Figure 6. 
Scatter plot of actual and predicted ages for the multi-study data of normal controls. The age 

prediction was performed using an ensemble regressor using as input volumetric imaging 

features obtained by applying three different label fusion methods.
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Table 2

Dice scores obtained for the labeling of images in 4 public data sets using various combinations of warps and 

label fusion strategies.

DRAMMS ANTS DRAMMS ANTS DRAMMS+ANTS

0.1 0.2 0.25 0.5 0.1+0.2 0.5+0.25 All Parameters

A. MV BrainWeb 86.38 ± 0.59 85.8 ± 0.63 84.23 ± 1.21 85.75 ± 1.15 86.35 ± 0.61 85.18 ± 1.18 86.91 ± 0.84

IBSR 82.45 ± 1.31 82.34 ± 1.3 82.44 ± 1.44 82.95 ± 1.44 82.51 ± 1.32 82.79 ± 1.46 83.23 ± 1.36

NIREP 79.09 ± 1.67 78.62 ± 1.69 77.77 ± 1.74 78.7 ± 01.72 79.18 ± 1.7 78.42 ± 1.73 79.73 ± 1.7

OASIS 86.98 ± 2.63 86.99 ± 2.58 86.85 ± 2.6 87.05 ± 2.46 87.06 ± 2.61 87.01 ± 2.51 87.53 ± 2.34

B. SimRank BrainWeb 88.06 ± 0.58 87.65 ± 0.61 86.94 ± 1.14 88.16 ± 1.08 88.24 ± 0.58 87.94 ± 1.1 89.26 ± 0.76

IBSR 83.21 ± 1.3 83.15 ± 1.23 83.38 ± 1.31 83.79 ± 1.36 83.35 ± 1.28 83.76 ± 1.31 84.14 ± 1.3

NIREP 80.03 ± 1.74 79.75 ± 1.78 79.36 ± 1.79 79.99 ± 1.79 80.23 ± 1.79 79.91 ± 1.8 80.95 ± 1.79

OASIS 87.43 ± 2.47 87.44 ± 2.36 87.46 ± 2.29 87.57 ± 2.18 87.53 ± 2.41 87.62 ± 2.21 88.07 ± 2.06

C. SimRank+BM BrainWeb 90.54 ± 0.57 90.27 ± 0.59 89.73 ± 0.97 90.46 ± 0.91 90.78 ± 0.59 90.41 ± 0.92 91.61 ± 0.7

IBSR 84.15 ± 1.3 84.14 ± 1.21 84.27 ± 1.38 84.65 ± 1.35 84.27 ± 1.25 84.63 ± 1.35 84.96 ± 1.3

NIREP 79.91 ± 1.69 79.61 ± 1.78 78.59 ± 1.9 79.24 ± 1.83 79.97 ± 1.77 79.04 ± 1.88 79.98 ± 1.88

OASIS 87.68 ± 2.2 87.72 ± 2.11 87.99 ± 1.93 88.12 ± 1.77 87.76 ± 2.14 88.13 ± 1.82 88.27 ± 1.81
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Table 3

Segmentation of mid-brain structures.

Average Dice Coefficient Hausdorff Distance

Team Name Mean Median Mean Median

UPENN-SBIA-MAM 0.8686 0.8772 3.3043 3.1006

PICSL 0.8663 0.8786 3.5381 3.2369

SBIA-LevelSet 0.8654 0.8775 3.4237 3.1429

deedsMIND 0.8402 0.8573 4.1027 3.8983

PICSL-SV-MRF 0.8343 0.8421 4.1749 3.9972

MSRC-AtlasForest-Stage2 0.8282 0.8484 3.7411 3.5231

DL-UB 0.8243 0.8346 5.0941 4.5566

PICSL-SV-MRF-baseline_3 0.8186 0.822 5.3519 5.1216

MSRC-AF-NEW-STAPLE 0.8063 0.8169 4.6494 4.376

deedsMIND-no-marginals 0.7216 0.7539 6.1614 5.512

Retrieved from http://masi.vuse.vanderbilt.edu/submission/leaderboard.html on 11/02/2015.

Unidentified or undocumented submissions, and repeat submissions are not shown.

For detailed method descriptions of listed submissions please see the challenge proceedings at https://masi.vuse.vanderbilt.edu/workshop2013/
images/1/1b/SATA-2013-Proceedings.pdf
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Table 4

Brain age prediction from ROI volumes computed using three alternative label fusion methods. The brain age 

is calculated with cross-validation using across study data. Pearson's correlation coefficient (r), concordance 

correlation coefficient (ccc) and mean absolute error (MAE) were calculated as quantitative metrics of 

prediction accuracy.

STAPLE JLF MUSE

r ccc mae r ccc mae r ccc mae

ADNI-1 0.34 0.21 7.37 0.45 0.31 6.13 0.47 0.40 4.91

PNC 0.40 0.21 6.37 0.51 0.28 5.86 0.59 0.47 3.47

BBL-NC 0.46 0.30 9.32 0.60 0.43 8.49 0.70 0.62 5.99

BLSA 0.79 0.77 6.85 0.81 0.79 6.79 0.80 0.78 6.59

NiCK 0.40 0.20 6.82 0.46 0.22 7.16 0.53 0.34 5.11

AllStudies 0.94 0.93 7.05 0.95 0.94 6.62 0.96 0.96 5.49
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